
Naira Hovakimyan
Mechanical Science and Engineering
University of Illinois at Urbana-Champaign

Safe Learning for Autonomous Systems

via 𝓛𝟏 Adaptive Control, Contraction Theory, and Machine Learning



• CONSISTENT
• SAFETY CRITICAL
• POWERFUL
• LARGE-SCALE
• PROFITABLE
• CERTIFIED

Building a Bridge • AUTONOMOUS
• COLLABORATIVE
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• LOW-COST
• RECONFIGURABLE
• MULTI-AGENT
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Recent Advances in Learning-Based Control
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Source: Deepmind (Alphabet Inc.)

Heess et al. "Emergence of Locomotion Behaviours in Rich 
Environments." arXiv preprint arXiv:1707.02286 (2017)

Source: OpenAI Inc.

Akkaya et al. "Solving rubik's cube with a robot hand." arXiv preprint 
arXiv:1910.07113 (2019).

But the Tesla accidents…

Source: The Inrtercept Source: Autoweek Source: ABC News

Source: Skydio



Safety-Critical Systems
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Learjet 45 Aerial robots Self-driving cars (credit: Daniel Lu) 

• Difficulty in safely obtaining a large amount of data for 
training.

➢The architecture must be designed appropriately.

• Accidents can be expensive and sometimes even deadly.

➢Safety needs to be guaranteed.



Challenges and the Tools
Complex Dynamics Uncertain Models Uncertain Environments

• Structured models

• Parametric uncertainties

• Deterministic representations

Control theoretic tools

• General models

• Unstructured uncertainties

• Stochastic representations

Data-driven ML tools

Bridging the divide

Safety & Robustness Empirical Performance
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Sources of Uncertainty

Learning-Based Control Setup

Model 

Learning

Optimized 

Controller
• Modeling Errors

• External Disturbances

Loss of performance and stability guarantees for systems under uncertainty!



Safety must be built into control architecture



Safety 

Controller

Model 

Learning

Optimized

Controller

Safe Learning and Control Setup

Bounds on the 

uncertainty
and its growth in t and x.

Nominal Model Uncertainty



The safety controller must provide certificates of performance and robustness:

Transient performance Steady-state performance Time-delay margin Disturbance rejection

Safe Learning and Control Setup



ℒ1-Adaptive Control Architecture

• Guaranteed uniform performance bounds
and robustness margins

• Validated for manned and unmanned
aerial vehicles, oil drilling operations,
hydraulic pumps, etc.

• Commercialized by various industries,
including Raymarine, Caterpillar, etc.

System

Adaptation 

Law

State 

Predictor

Low-

Pass 

Filter

Low-Pass Filter Robustness

Adaptation Loop Performance



ℒ1-adaptive 

controller

Model 

Learning

Optimized

Controller

• Retaining the key features of performance and
robustness guarantees of ℒ1- adaptive controllers

• Benefitting from the versatility offered by machine 
learning methods

Safe Learning and Control Setup



Guarantees Provided by ℒ1 Theory 
• 𝑥⋆: Desired system trajectory

• 𝑥𝑟: Reference system (best performance achieved using the ℒ1 framework
with known uncertainties, but non-implementable)

• 𝑥 : Actual system trajectory

Robustness: Filter bandwidth ⍵

Decoupling

Performance: Adaptation rate Γ

Exponential decay of error due to the difference in initial conditions



A Timeline of ℒ1-Adaptive Control Theory

‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20

First papers 
appeared at ACC

UAV path following 
with ℒ1 at AIAA 

GNC

NASA issued grants for 
testing ℒ1 on AirSTAR

Raymarine
Evolution 

autopilots with ℒ1

Tests on Learjet and F16 
at the Edwards AFB

Safe Learning 
and ControlJoint papers on highly 

unstable aircraft 
configurations



Robust Flight Control: Learjet at Edwards AFB
• Recovered flying qualities of different Variable Stability System configurations

• Restored handling qualities to a safe and consistent level despite the off-nominal 
dynamics

• The controller was shown to be easily adjusted to improve handling qualities.

Ackerman, et al. “Evaluation of an ℒ1 Flight Control
Law on Calspan’s Variable-Stability Learjet.” AIAA
Journal of Guidance, Control and Dynamics, vol. 40,
No. 4, pp. 1051-1060, 2017.



“The ℒ1 controller is designed to automatically intervene in the

case of control problems, immediately reconfiguring the flight

control system to compensate for degraded flying qualities

from mechanical failure or battle damage to a control surface,

or even the unintended result of shifting center-of-gravity

inflight for better cruise performance. Acting as a backup to

the standard flight control system, the ℒ1 is designed to

provide safe, predictable, reliable and repeatable responses

that would free up pilots to deal with the emergency and

further compensate for reduced performance.”

Guy Norris, Aviation Week and Space Technology. 

Published on April 6, 2015.
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2016 Flight Test of F-16



Lifting Body Incident (1967) and the 2018 Flight 
Test

Puig-Navarro et al. “An ℒ1 Adaptive Stability Augmentation System Designed to MIL-HDBK-1797 Level 1 Specifications.” In Proceedings of AIAA Guidance, Navigation and Control Conference, 
San Diego, CA, 2019.



“ℒ1 adaptive control has overcome some of the

major limitations of conventional adaptive

control systems by providing predictable

robustness guarantees in the presence of a

large class of uncertainties. It has the

potential to revolutionize aircraft safety by

greatly diminishing the possibility of pilot error

during high workload maneuvers.”

Published on April 3, 2018.

The ℒ1 adaptive flight control 

system installed in an aircraft. 

(Maj. Miguel J. Carreras)



... and many other applications

Drone—based package delivery Time-critical coordination Fault-tolerant software

Human-centered (perceived) safetyIndoor aerial vehicles



Complex Dynamics and Environments

• Unpredictable environments

• Obstacle-rich and dynamic

• Nonlinear uncertain dynamics

• Fast (re-)planning

• Safe planning

• Safe learning

• Guaranteed robustness

Challenges Solutions

20



Safe Learning & Control: Framework

Safety 

Controller

Machine 

Learning
Controller

• Nominal Control Design – Foundation for desired properties

• Robust Adaptive Augmentation – Build-up for safety

• Learned Models – Performance and robustness

21



Motivation
• Recent developments:

• Contraction theory: Differential geometry-based simplified synthesis for 

nonlinear models

• Machine learning: Use of data and computation to accurately model complex 

systems

• Autonomous UAS: Low-cost platforms with ever-improving autonomy 

capabilities.

We need to rethink and view robust adaptive augmentation through the 

lens of the recent developments 

• Robustness and ℒ1 adaptive augmentation of learned systems and controllers

• Safe use of data-dependent ML models

• Certificates of guaranteed performance
22



Outline
• Robust Control Contraction Metrics (RCCM)

• 𝐶ℒ1-𝒢𝒫: Contraction ℒ1 adaptive control with Bayesian learning

• ℒ1-RG: Adaptive reference governors for constrained uncertain systems

• ℒ1-MPPI: Fast and safe re-planning with stochastic optimization

• ℒ1-RL: Robustifying RL policies with ℒ1 adaptive augmentation

• Learn-to-Fly (L2F): ℒ1 adaptive control for safe learning on the fly

• Robust adaptive control of linear parameter-varying (LPV) systems

• Distributionally robust adaptive control (DRAC) of stochastic systems

• ILF-ℒ1: Hardware experimental verification on a quadrotor

• Difftune: Data-driven tuning controllers

23



Safe Learning-based Control
with 𝓛𝟏 Adaptive Control 
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Contraction Theory-based Control
• Consider the nominal uncertainty-free dynamics

and a desirable pair             that satisfies

• Contraction theory allows the synthesis of feedback                            such that            

• Incremental stability

• Control contraction metrics (CCMs) parametrize Lyapunov 

functions on the differential space

where 𝛿𝑥 is the differential.

• A uniformly positive and bounded                     is a CCM if 

Convex

Conditions!
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• Standard CCM-based controllers can be conservative for disturbance rejection

• Disturbance not explicitly considered during synthesis

• For disturbed system 

we develop robust CCMs to minimize the universal ℒ∞ gain, 𝛼

• Disturbance rejection explicitly considered during synthesis

• Provides certificate tubes for both states and control inputs

• Can be synthesized via solving convex optimization (i.e., LMI) problems

• Proves to yield tighter state tubes than the CCM-based approach [1], under certain 
conditions

Robust Control Contraction Metrics

Bounded disturbances

Output variables

Zhao, Lakshmanan, Ackerman, Gahlawat, Pavone, and Hovakimyan. Tube-certified trajectory 

tracking for nonlinear systems with robust control contraction metrics. IEEE RA-L, 2022. 
[1] Singh, Landry, Majumdar, Slotine, and Pavone. Robust feedback 

motion planning via contraction theory. IJRR, 2019.
26



RCCM on a 3D Quadrotor

• To show the effectiveness of our proposed 

RCCM, we verify the controller on a 3D 

quadrotor in a cluttered environment

• Dynamics

• 10 states, 4 inputs

• Wind disturbances

• Comparative Controllers

• Purely CCM-based approach [1]

• RCCM-P (ours, optimizing the tube size for 

position states only)

Goal

Start

27[1] Singh, Landry, Majumdar, Slotine, and Pavone. Robust feedback motion planning via contraction theory. IJRR,  2019.



RCCM on a 3D Quadrotor
CCM [1] RCCM-P (ours)

• Tube size for X-Y-Z: 0.768 m

• Travel time: 13.92 seconds

• Tube size for X-Y-Z: 0.316 m 

• Travel time: 9.68 seconds 
Under Wind Disturbance up to 1 m/s2

Planned Actual

28

Zhao, Lakshmanan, Ackerman, Gahlawat, Pavone, and Hovakimyan. Tube-certified trajectory 

tracking for nonlinear systems with robust control contraction metrics. IEEE RA-L, 2022. 

[1] Singh, Landry, Majumdar, Slotine, and Pavone. Robust feedback 

motion planning via contraction theory. IJRR, 2019.



𝐶ℒ1-𝒢𝒫: Contraction ℒ1 with Bayesian Learning

• RCCM allows to synthesize 

robust baseline controllers

• We can use ML in the form of 

Gaussian process regression to 

learn epistemic uncertainties and 

further improve performance

• To counter learning transients 

and to provide guarantees of 

safety, we bring in ℒ1 adaptive 

control

Gaussian process

• Learning with 

minimal data

Contraction theory

• Safety tubes

𝓛𝟏 controller

• Safety during learning, 

robustness, 

performance

29Gahlawat, et al. Contraction ℒ1-Adaptive Control using Gaussian Processes. Annual Conference on Learning for Dynamics and Control (L4DC), 2022. 



𝐶ℒ1-𝒢𝒫: Contraction ℒ1 with Bayesian Learning

• Safety certificates in the form of tubes from 

the 𝐶ℒ1-𝒢𝒫 framework which enables safety 

during learning

• Natural framework for learning using 𝒢𝒫 :

• guaranteed performance during the 

learning transients

• improved performance of the ℒ1 adaptive 

controller, i.e., smaller tubes

• Improved quality of the planned trajectory
Adaptation 

Law

State 
Predictor

Bayesian 
Learner

Contraction-
based Controller

Low-Pass 
Filter

System
+

-

Planner

30Gahlawat, et al. Contraction ℒ1-Adaptive Control using Gaussian Processes. Annual Conference on Learning for Dynamics and Control (L4DC), 2022. 



𝐶ℒ1-𝒢𝒫: Contraction ℒ1 with Bayesian Learning

CCM only feedback → No safety guarantees

Out of 10 random initial conditions, 8 end in 

collision

Contraction ℒ1 → Safety guaranteed

No learning → Safe but conservative

𝐶ℒ1-𝒢𝒫 → Safety & Performance 

As the uncertainty is learned → Performance 

improvement without sacrificing robustness

31Gahlawat, et al. Contraction ℒ1-Adaptive Control using Gaussian Processes. Annual Conference on Learning for Dynamics and Control (L4DC), 2021. 



ℒ1-MPPI: Fast and Safe Re-Planning

32

• Fast and robust re-planning is needed for 
mission success in complex, dynamic 
and uncertain environments. 

• Model predictive path integral (MPPI) 
control provides a framework for solving 
nonlinear MPC with complex constraints 
in near real-time.

• Robustness against dynamic 
uncertainties and disturbances is 
achieved through an 𝓛𝟏 augmentation.

Pravitra, J., Ackerman, K. A., Cao, C., Hovakimyan, N., and Theodorou, E. A. L1-Adaptive MPPI Architecture for 
Robust and Agile Control of Multirotors. International Conference on Intelligent Robots and Systems, 2020.

System

Adaptation Law

State Predictor

Baseline Controller

MPPI

Low-Pass 
Filter



ℒ1-MPPI: Fast and Safe Re-Planning
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Nonlinear system

▪ Can leverage parallel sampling for modern GPUs

▪ Can handle complex (possibly non-differentiable) dynamics and 
cost functions

Unknown nonlinearity, disturbance

▪ Optimal control computation 

forward in time for nominal 

system

▪ Update the control 

sequence iteratively by 

sampling (thousands of) 

trajectories

MPPI

▪ Robustifies against the 

discrepancy 

▪ Guaranteed robustness and 

transient and steady-state 

bounds for performance

𝓛𝟏 adaptive control

Nominal system

ሶ𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡 + 𝜖 + ℎ(𝑥𝑡. 𝑢𝑡)



ℒ1-MPPI: Fast and Safe Re-Planning

34

System: Control of a quadrotor (12 states, 4 control inputs) with state-dependent 

uncertainties and external disturbances in Flight Goggles. 

Pravitra, Ackerman, Cao, Hovakimyan, Theodorou. ℒ1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors, IROS, 2020.



Robustifying Reinforcement Learning (RL) 
with ℒ1 Augmentation 

35
Cheng, Zhao, Wang, Block, Hovakimyan. Improving the Robustness of Reinforcement Learning Policies with ℒ1-Adaptive Control, Robotics and Automation Letters, 2020.



Distributionally Robust
Adaptive Control
(DRAC)

36



Motivation
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• Real-world systems have inherent uncertainties that are 

best represented by stochastic systems;

• A natural setting to capture the uncertainty-aware ML-

driven developments: developed in data-driven 

environments;

• Can bridge the design space and the test space, as the 

synthesis solutions get validated in Monte-Carlo 

environments, results are distributional in nature;

• Many robotic solutions today are developed 

using the language of stochastic optimal control, 

and hence the benchmarking and comparisons 

are easier to do.



The Systems
Most processes evolve in a nonlinear fashion and are subject to random 

perturbations

• E.g. wind disturbances, thermal effects

Nonlinear process continuously perturbed by random 

disturbance: Itô Diffusion Process (SDE)

• However, we do not have full understanding of the vector 

field itself

• Epistemic uncertainties

• Thus, we consider the following uncertain SDE

Unknowns Epistemic

Brownian

Motion

38



Nominal State

Distribution

We consider the following true dynamics given by a nonlinear Ito diffusion SDE

The Systems

Unknowns Epistemic
Brownian

Motion
Aleatoric

True State

Distribution

We consider the following epistemic uncertainty-free nominal dynamics

39



Robustness Paradigm

40

• For linear, parameterized and deterministic 

models the error in the estimates of the 

parameters leads to the difference between the 

true solutions/trajectories and the 

nominal/learned trajectories

• Robustness to the estimates of the parameters 

produces certificates quantifying the difference 

between true and nominal solutions



Robustness Paradigm

41

• Looking at the solutions of nonlinear stochastic 

models is not helpful since even the same 

SDE will produce different solutions each time 

it is evolved: property of stochastic processes.

• Instead, we should look at the time-evolving 

distributions, the samples of which are the 

solutions themselves.

• We can say that the two SDEs are equivalent 

if the temporal trajectories of their respective 

distributions are the same.

• The solutions are the samples from the 

same distribution.



• Safe use of machine learning

• Safe predictive control

• Natural ability to consider epistemic and aleatoric uncertainties

• Systems and our understanding of them are stochastic

• Design principles guided by distributional guarantees independently 

verified by e.g. Monte-Carlo methods

• Design space = Test space

• Easier feedback between the spaces

Distributional Robustness

42



The Goals

• We want to design feedback                                      such that

• True distribution      remains uniformly bounded around the                         

nominal distribution

• Uniform bound incorporated by high-level planner to ensure safe operation

• Bound in the sense of Wasserstein metric

• Optimal transport theory

• A metric on the space of distributions (distance and shape)

True

Nominal

43



The Goals: Pictorial Depiction

Ambiguity tube           : induced by ambiguity sets

• For each 𝑡 ≥ 0

Wasserstein

Distance

Ambiguity

Set Nominal

Solution

True

Solution

44



Controller
True

Nominal

The controller has the architecture of an ℒ1
adaptive controller

The controller has three main components 
System

Adaptation Law

State Predictor

IES Controller

Low-Pass 
Filter

State Predictor

Adaptation Law

Low-Pass Filter

45



Simulation Results
We consider the stochastic version of a feedback linearizable system from [1] 

Increased Γ
Increased ω

• Increasing the adaptation-rate Γ reduces the bounds

• Similarly, increasing the filter-bandwidth ω reduces the bounds

[1] Lakshmanan, Gahlawat, and Hovakimyan. IEEE CDC, 2020. 46



ILF-ℒ1 for
Autonomous Drones

47



Challenges

• Underactuated dynamics

• Coupled translational and 

rotational motions

• Uncertainties and disturbances

• Aerodynamic drag

• Varying payload/moment of 

inertia/center of gravity

• Wind

48



Geometric Control + ℒ1 Augmentation

Z. Wu, S. Cheng, K. A. Ackerman, A. Gahlawat, A. Lakshmanan, P. Zhao and 

N. Hovakimyan, “L1 Adaptive Augmentation for Geometric Tracking Control of 

Quadrotors”, accepted by ICRA 2022.

• Modelling all possible uncertainties and disturbances using first principles

• ℒ1 adaptive control compensates for the uncertainties and disturbances

• Safety guaranteed in the sense of tubes around desired trajectories

• Low-level control: All computations are onboard (440 Hz)

• Experiments on a custom-built quadrotor

49



Ground Effects
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• Ground effect disturbs the altitude 
tracking when the drone enters and 
leaves the region above box. 

• ℒ1 suppresses the altitude 
disturbance within ±0.01 m.



Slosh payload
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• Half full water bottle attached rigidly to the bottom of 
the drone (315g ≈ 50% body weight)

• Time-varying center of gravity and moment of inertia



52

• Half full water bottle attached rigidly to the bottom of 
the drone (315g ≈ 50% body weight)

• Time-varying center of gravity and moment of inertia

Slosh payload



Chipped Propeller
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• Cut the propeller tip (1/4 of radius)
• Reduction in the generated thrust



Chipped Propeller
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• Cut the propeller tip (1/4 of radius)
• Reduction in the generated thrust
• Baseline controller cannot even stabilize the drone.
• ℒ1 keeps the drone stabilized.



Downwash
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• Downwash from a heavier drone hovering 0.6 m on top
• ℒ1 shows advantageous transient response compared with PID. 

Quadrotor on top: 1400 g | Quadrotor at bottom: 640 g



Fly in a Tunnel 
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• Tunnel size: 1.2 m (W) x 0.6 m (H) x 0.6 m (D)
• Complex air flow indicated by tufts
• ℒ1 shows consistent altitude tracking 

compared with PID. 

Tufts



Hanging Off-Center Weights
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• Hanging weights beneath the motor (off the drone’s geometric 
center)

• ℒ1 shows the fastest transient performance compared with PID. 

Quadrotor weight: 640 g



Benchmark Experiments with Slung Weights

58

58indicates failed trials due to instability.

1

Consistent performance without retuning 𝓛𝟏 parameters.

Z. Wu*, S. Cheng*, P. Zhao, A. Gahlawat, K. A. Ackerman, A. Lakshmanan, C. Yang, J. Yu, and N. Hovakimyan, “L1Quad: L1 adaptive
augmentation of geometric control for agile quadrotors with performance guarantees,” arXiv preprint arXiv:2302.07208, 2023.



NASA ULI on Assured Autonomy (2022 - 2025)

Robust and Resilient Autonomy for Advanced Air Mobility

Team: PI: Naira Hovakimyan, 15 Co-Is from 4 universities and 2 companies 

Highlights

• Learning-enabled 

autonomy with principled 

ways to deal with off-

nominal situations 

• Fast code-level verification

• Runtime fault diagnosis 

and reachability analysis

• Flight tests at an FAA-

designated UAS test site

59



In conclusion

Complex Dynamics Uncertain Models Uncertain Environments

• Structured models

• Parametric uncertainties

• Deterministic representations

Control theoretic tools

• General models

• Unstructured uncertainties

• Stochastic representations

Data-driven ML tools

Bridging the divide

Safety & Robustness Empirical Performance

60

We wish to bridge the divide

But, we also want to learn the fundamental limitations.



Understanding the limitations

61

▪ Ignoring the fundamental limitations can have catastrophic consequences,

e.g. X-15 crash.
▪ Gunter Stein: Respect the Unstable. IEEE CDC Bode Lecture 1989

▪ Control Engineering
▪ Well established conservation laws, e.g. Bode Integral

▪ “Conservation laws make us humble” – Gunter Stein (T+S=1)

▪ Modern ML tools
▪ Need to understand the fundamental limitations ⟹ safe and intelligent aerial co-robots.

Control ML



Future Directions

62

• Substantial efforts underway towards building a perceptual control framework 

through integration of ℒ1 adaptive controllers with only-vision based feedback (in 

collaboration with Shenlong Wang)

• Ongoing efforts towards V&V of ℒ1 adaptive control 

• Distributionally Robust Adaptive Control framework 

• Robust planning and control for uncertain systems and environments

• Theoretical guarantees for model-based stochastic optimal control

• Robust deep learning architectures

• Robust generative modeling 

• Benchmarking and experimentation



Our Group
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Alumni (Postdocs and Ph.D.): 

Chengyu Cao (University of Connecticut)

Xiaofeng Wang (University of South Carolina)

Lili Ma (WIT, Boston, MA)

Vijay Patel (Indian Ministry of Defense)

Vahram Stepanyan (NASA Ames)  

Jiang Wang (Apple) 

Amanda Dippold (Howard Community College)

Dapeng Li (Acker.com)

Enric Xargay (Barcelona, Spain)

Zhiyuan Li (DJI)

Evgeny Kharisov (Waymo)

Hui Sun (Apple)

Venanzio Cichella (University of Iowa)

Syed Bilal Mehdi (Zoox)

Hanmin Lee (Korean Defense Agency)

Ronald Choe (Singapore Defense Agency)

Hamid Jafarnejadsani (Stevens Inst. of Tech.)

Steve Snyder (NASA)

Thiago Marinho (Waymo, Alphabet)

Hyung-Jin Yoon (Tennessee Tech University)

Alexandre Barbosa (Amazon Robotics)

Kasey Ackerman (NASA)

Javier Puig Navarro (NASA)

Arun Lakshmanan (Apple)

Gabriel Barsi Haberfeld (Apple)

Andrew Patterson (NASA)

Wenbin Wan (University of New Mexico)

Current Postdocs: 

Aditya Gahlawat

Sheng Cheng

Pan Zhao

Tigran Bakaryan

Current Graduate Students: 

Yikun Cheng, Hyungsoo Kang, Neng 

Wan, Zhuohuan Wu, Erin Swansen, 

Lin Song, Ziyao Guo

Vivek Sharma, Min Jun Sung

Yuliang Gu, Jing Wu, Chuyuan Tao, 

Michael Aramyan, Sambhu 

Karamanas



Sponsors

64

Source: New York Times

Learjet 1

Learjet 2

F-16

Research supported by NSF, AFOSR, NASA, ARO, USSOCOM, ONR, Boeing, IntelinAir and transitioned into 

commercial products by Raymarine, Caterpillar, Raytheon, JOUAV, StatOil, IntelinAir, among many others.
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