IEEE CSS TCAC Workshop at the 7th IEEE Conference on Control Technologies and Applications, August 15th, 2023

Towards Trustworthy Autonomy:

How AI Can Help Address Fundamental Learning, Adaptation and Decision-Making Challenges in Aerospace Controls

Prof. Gokhan Inalhan, Autonomous Systems and Al Cranfield University

August 15th, 2023

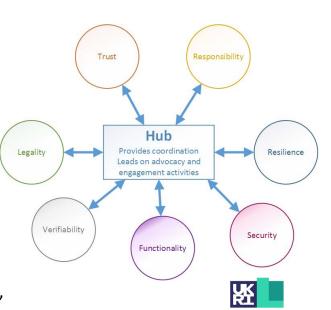
www.cranfield.ac.uk

Autonomous Systems and Artificial Intelligence in a Customer-Led World

New technology solutions lead to new Business Models, and Autonomy and AI are key enablers

EPSRC Trustworthy Autonomous Systems (TAS) Node on Security : The Control Challenge

- Autonomous Systems rely on the ability to conduct run time adaptations of control decisions over attacks or "perceived" attacks:
 - Adversaries
 - Physical
 - Information-plane
 - Information and dynamic environment uncertainties
 - Degraded performance
 - CNS and Infrastructure
 - Actuators
- How to do this in a "trustworthy" fashion in a "learning-enabled context"?
 - Safe
 - Secure
 - Reliable



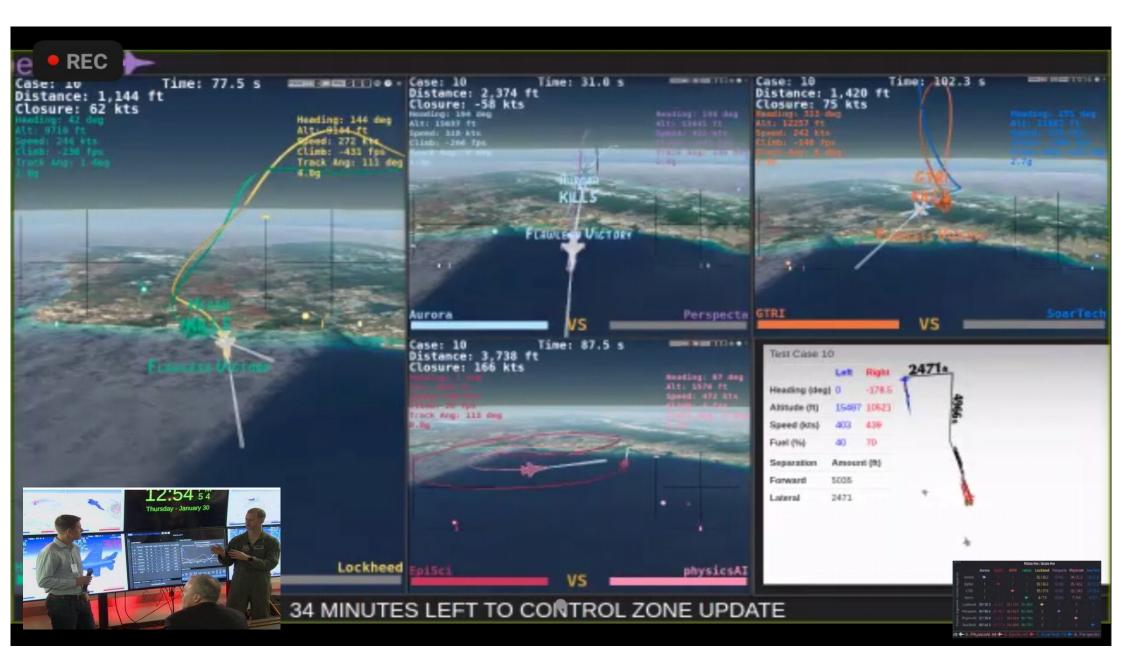
ngineering and

Physical Sciences Research Council

AlphaDogfight Trials UIRTUAL FINALS 8.18-20.2020

DARPA Air Combat Evolution (ACE) program

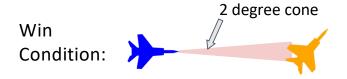
DARPA



Alpha Dog Results: Assumptions

- Main assumptions:
 - Our own and **enemy's position**, velocity, attitude, angular rate is **known at 50 Hz**.
 - **No self preservation logic**, aircrafts can go through each other.
 - **Shooting is activated automatically** without any trigger command.
 - The combat starts with the aircraft's noses pointing opposite of each other.

Property	Object Platform(s)
Time since start of engagement	N/A
Latitude/longitude/altitude	All
Location relative to scenario center $(x/y/z)$	All
Orientation (roll//pitch/heading)	All
Velocity $(x/y/z)$	All
Angular rate (roll/pitch/yaw rates)	All
Acceleration $(x/y/z)$	Friendly Only
Angular acceleration (roll/pitch/yaw second order	Friendly Only
rates)	
Angle of attack	Friendly Only
Sideslip angle	Friendly Only
Current control surface deflections	Friendly Only
Throttle position	Friendly Only
Fuel state	Friendly Only
Current thrust	Friendly Only
Distances to other aircraft	All
Angle of bearing to other aircraft	All



Alpha Dog Results: Winner Heron System's Falco

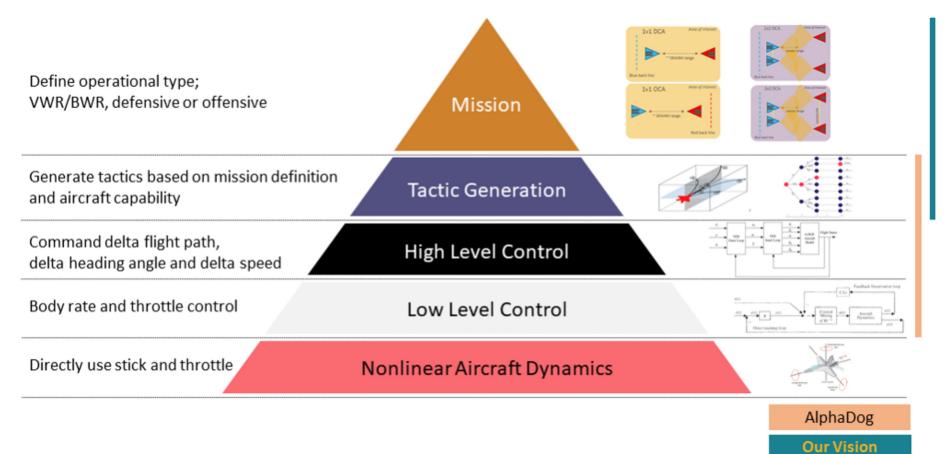
- Better stick and throttle control than others. Heron's **precise cone direction control** made them winner.
- Control command are given at 10 Hz, whereas other teams used 50Hz.
- **102 differently configured agent** trained and the main agent trained against these, similar to the AlphaStar.
- 4 billion episodes were trained, which took 5 weeks.

Alpha Dog Results: Fighter Pilot Comments

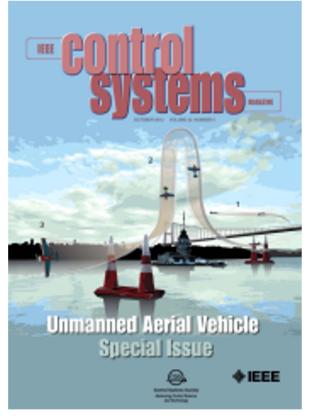
- In real life, the pilot can only see where the sensor can see, which gives an unfair advantage against the human operator.
- The AI agents did not have collision avoidance logic or self-preservation logic.
- Being in the shooting cone is considered a shot, but human pilots are trained to hold the target in plane and in range, and take into account the bullet time of flight.
- The human fighter pilots would lose to the human game player in the digital combat simulator(DCS).

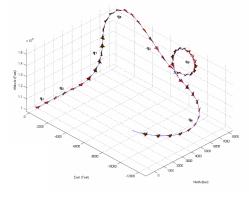
- A match between Heron System's Falco and human DCS player is set.
- The result was 3 wins for Falco, 1 win for human and 1 draw.

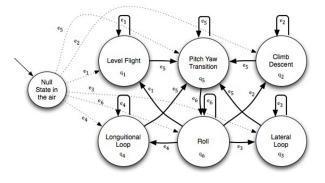
Cranfield University Our Concept



Mimicking the best fighter pilots... 2008

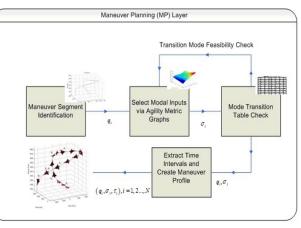






Maneuver Library Transformer

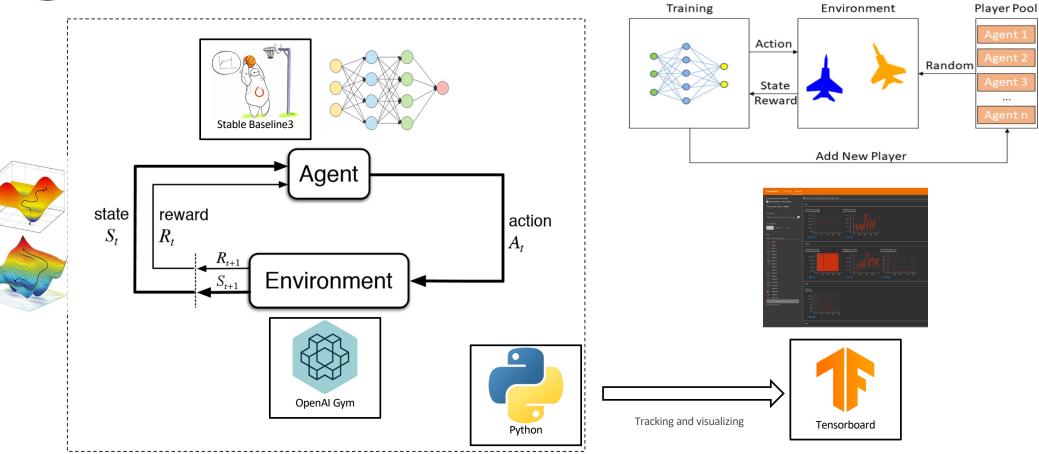
Mode	Constrained States	Driven Dynamics D	Modal Inputs M
	0		
Level Flight	$e_p, h, \phi, \psi, \beta, P, Q, R$	$n_p, \theta = \alpha$	$V_T(t)$
Climb/Descent	$e_p, \phi, \psi, \beta, P, Q, R$	n_p, h, θ	$V_{T}(t), \gamma = \theta - a$
Lateral Loop	r_{lat}, β	$\eta_{lat}, h, \alpha, \phi_w, P, Q, R$	$V_{T}\left(t ight), heta_{w},\dot{\psi}_{w}$
Longitudinal Loop	r_{lon}, β	$\eta_{lon}, e_p, \alpha, \phi'_w, P, Q, I$	$V_T(t), \dot{\theta}'_w, \psi'_w$
Pitch-Yaw	n_p, e_p, h, V_T, ϕ	$ heta, heta_w,\psi,\psi_w$	P(t), Q(t), R(t)
Transition			
Roll	$n_p, e_p, h, \theta, \psi, V_T, \beta$	α, ϕ	P(t), Q(t), R(t)



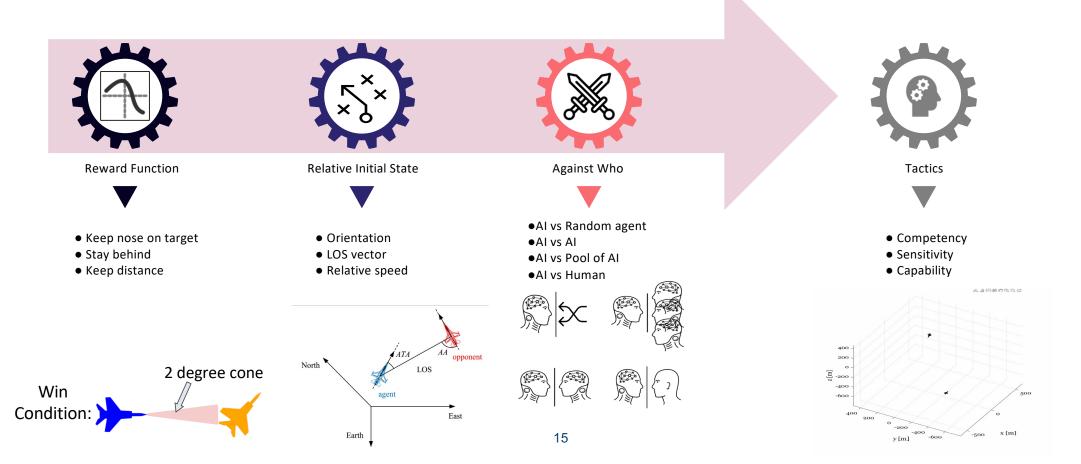
N. Kemal Ure and Gokhan Inalhan, "Autonomous Control of UCAVs Design of a multimodal control and flight planning framework for agile maneuvering", IEEE Control Systems Magazine, 32-5, 74-95, 2012

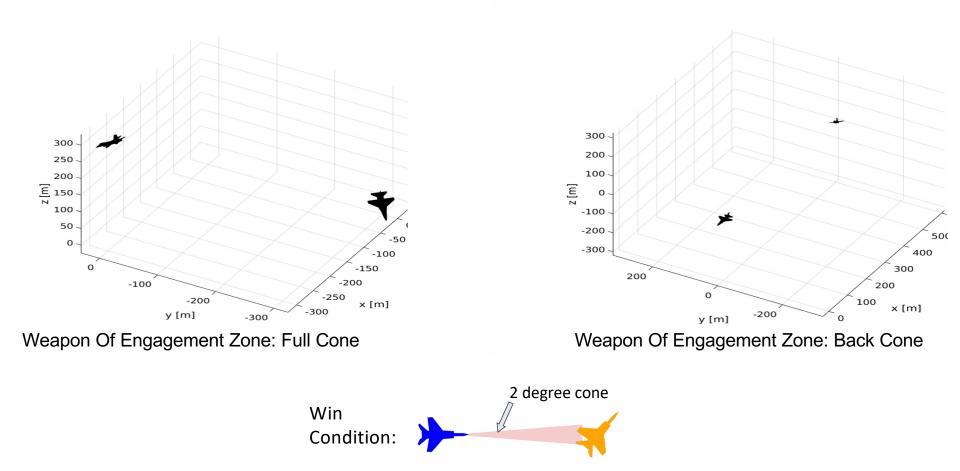
Autonomous Execution of Aircraft Supermaneuvers

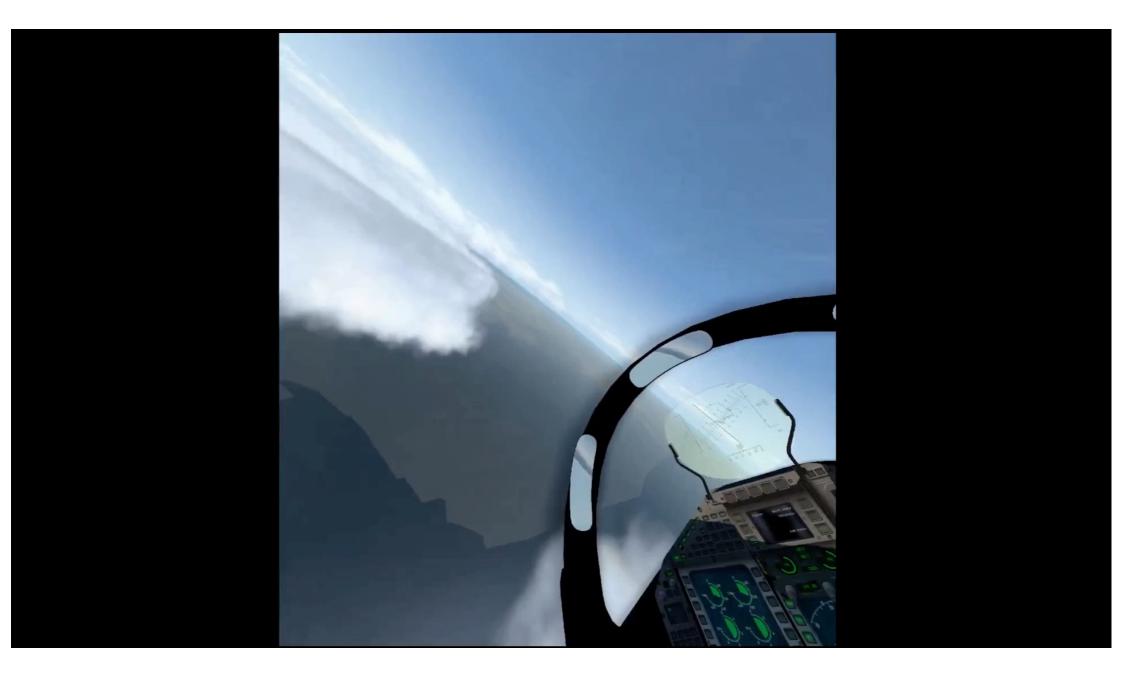
Reinforcement Learning Architecture



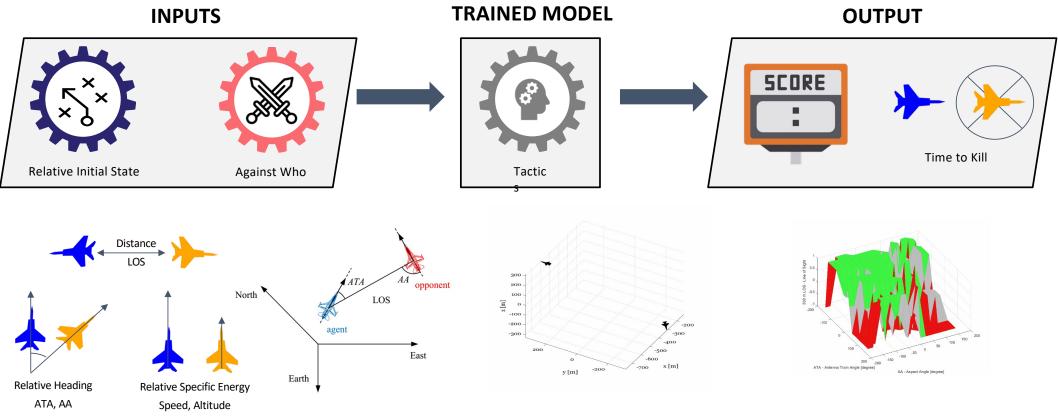
Building Blocks of Tactics : Fundamental Transformer



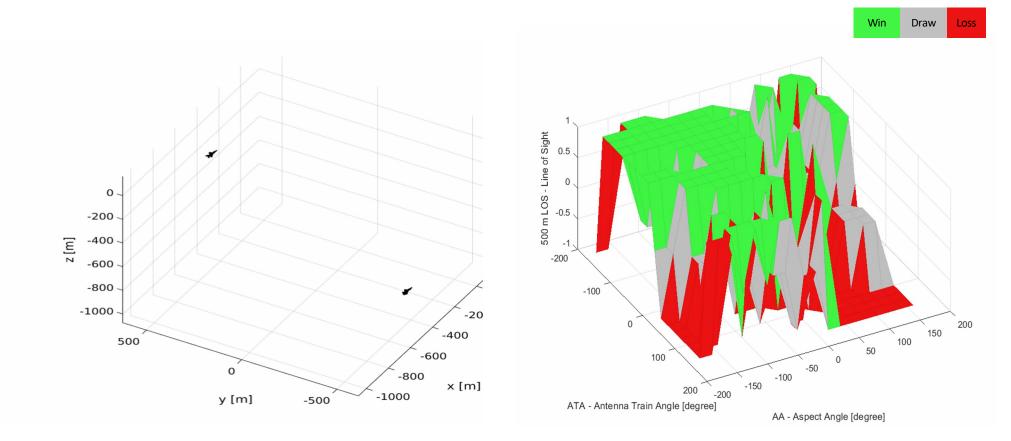




Winning Assessment with Changing Combat Conditions



Tactics and Engagement Decision



Our VR-Based Combat Evaluation System

1

2

3

4

Our Methodology: Stages

Stage 1: Create Environment

- Aircraft classes
- Multi-processor utilization
- Lightweight, fast training cycle
- Episode length, termination conditions

Stage 2: Design Reward Functions

No numerical ambiguity

- Continuous, differentiable
- Episodic, and geometric rewards

Stage 3: Initial Training

- Curriculum learning, against random agent
- Start from small the set of initial condition
- Introduce different start location and orientation

Stage 4: Self-Play Training

- Incremental learning
- Update opponent model regularly to promote further learning

Aircraft Model

- Discrete action sets with maneuver decomposition reduces 6DoF nonlinear dynamics to 3 DoF point mass model with distinct control input set
- Discretize action set
 - Combination of maximum and minimum delta velocity, delta path angle, and delta heading angle commands.
 - Total 27 discrete actions

$$V_{t+\delta t} = V_t + \frac{K_V}{s+K_V} \Delta V_c \bigg|_{\delta t} = V_t + \Delta V_c \times \left(1 - e^{-K_V \delta t}\right)$$

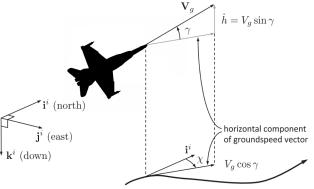
$$\chi_{t+\delta t} = \chi_t + \frac{K_{\chi}}{s+K_{\chi}} \Delta \chi_c \bigg|_{\delta t} = \chi_t + \Delta \chi_c \times \left(1 - e^{-K_{\chi} \delta t}\right)$$

$$\gamma_{t+\delta t} = \gamma_t + \frac{K_{\gamma}}{s+K_{\gamma}} \Delta \gamma_c \bigg|_{\delta t} = \gamma_t + \Delta \gamma_c \times \left(1 - e^{-K_{\gamma} \delta t}\right)$$

$$\begin{aligned} x_{t+\delta t} &= x_t + \delta t V_{t+\delta t} \cos \chi_{t+\delta t} \cos \gamma_{t+\delta t} \\ y_{t+\delta t} &= y_t + \delta t V_{t+\delta t} \sin \chi_{t+\delta t} \cos \gamma_{t+\delta t} \\ z_{t+\delta t} &= z_t - \delta t V_{t+\delta t} \sin \gamma_{t+\delta t} \end{aligned}$$

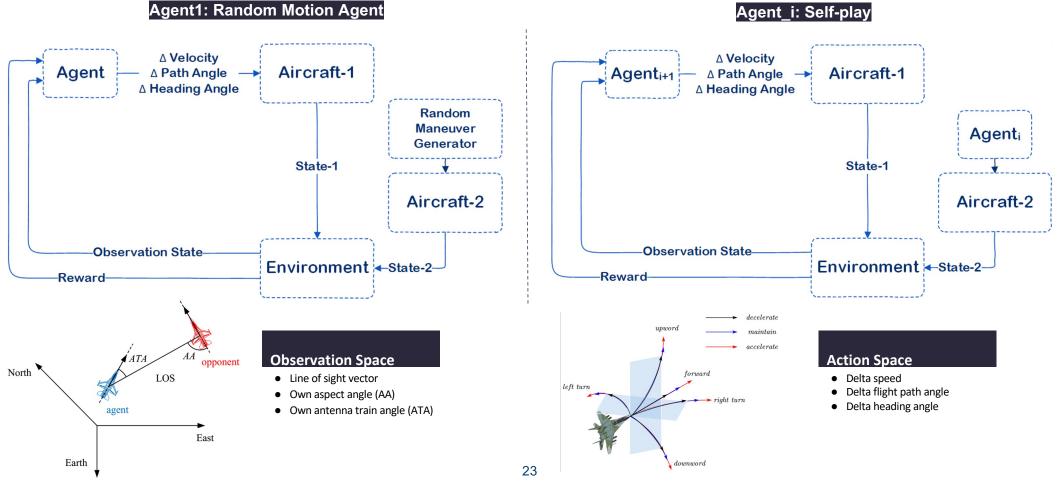
No	Manoeuvre	Control Values		
NO	No Ivianoeuvre		$\Delta \chi_c$	$\Delta \gamma_c$
1	Right upward turn accelerate	1	1	1
2	Right turn accelerate	1	1	0
3	Right downward turn accelerate	1	1	-1
4	Upward turn accelerate	1	0	1
5	Forward accelerate	1	0	0
27	Left downward turn decelerate	-1	-1	-1

Parameters	Symbol	Range or value
Velocity range	V	[100 m/s, 250 m/s]
Heading angle range	χ	[-180°, 180°]
Path angle range	γ	[-180°, 180°]
Delta velocity command	ΔV_c	[-10 m/s, 10 m/s]
Delta heading angle command	$\Delta \chi_c$	[-20°, 20°]
Delta path angle command	$\Delta \gamma_c$	[-20°, 20°]
Velocity gain	K_V	2
Heading angle gain	K _X	0.6
Path angle gain	K _v	0.4



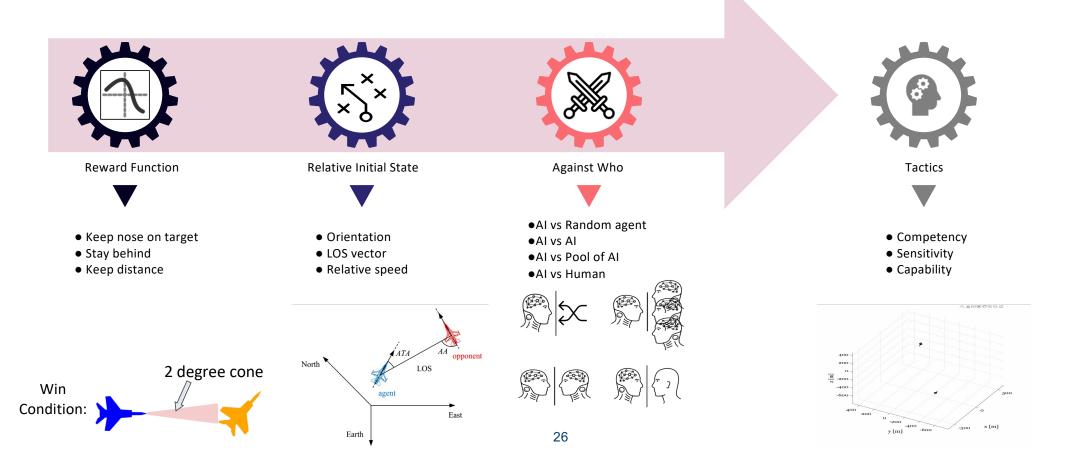
Flight path projected onto ground

Our Methodology: Training Architecture



Discrete Actions	 Search through discrete action set using the maneuver decomposition. Results in a faster learning compare to the continuous action set.
Generalization	 Aircraft dynamics approximating almost any aircraft. Trained across wide range of initial conditions.
Explainability	• Discrete action set allows explainability by relating discrete actions to decomposed rewards in decision tree.

Reward Functions: Building Blocks of Tactics



DARPA Alpha Dog Fight vs Our Approach

	DARPA Alpha Dog Fight	Our Approach
Initial Condition	Fixed	Random
Win Condition	2 degree cone	2 degree cone
Observation Space	Position, Velocity Attitude, Angular Rate Distance	Aspect Angle(AA) Antenna Train Angle(ATA) Line of Sight Vector(LOS)
Action Space	Roll Rate Pitch Rate Yaw Rate Throttle	Delta Speed Delta Path Angle Delta Heading Angle
Aircraft Type	6 DoF Aircraft Dynamics	3 DoF Point Mass
Simulation Environment	JSBSim	Custom
Hardware Used	5 workstations. Each has 128 core CPU and 6 RTX 6000 GPU	1 workstation with 128 core CPU and 2 RTX A6000 GPU
Number of Episode	4 Billion	~80 Million
Training Time	5 Weeks	24-36 Hours

Reward Functions: Tactic Set 1

Training Details

Rewards:

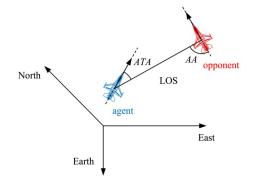
- Stay behind
- Keep nose on target
- Preserve your distance

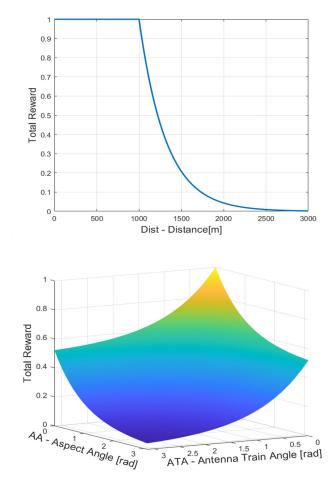
Initial States:

- Fixed orientation
- Fixed relative speed

Enemy Type:

Random Motion



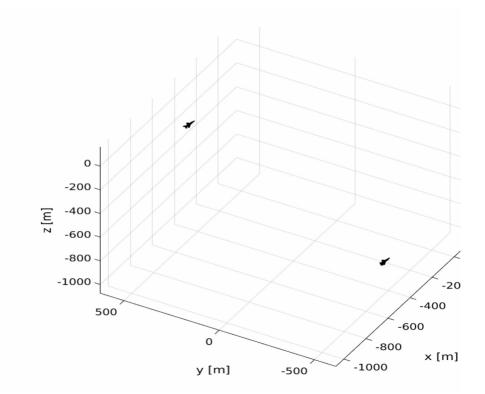


Tactic Set 1 Results

Rewards:

- Stay behind
- Keep nose on target
- Preserve your distance ⊿ ⊟ ⊚ ⊕ ⊕ ⊂ ☆





Reward Functions: Tactic Set 2

Training Details

Rewards:

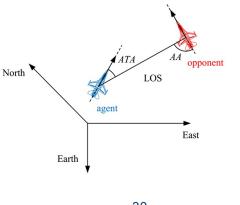
- Keep nose on target
- Preserve your distance
- Don't let target to get behind

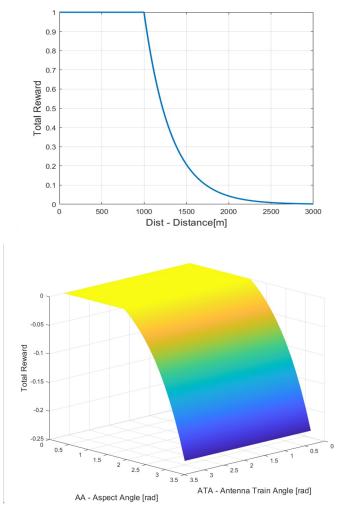
Initial States:

- Random orientation
- Random speed
- Random position

Enemy Type:

• Tactic Set 1

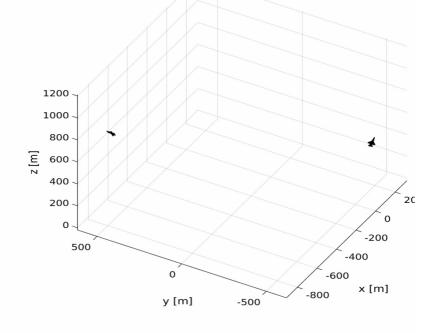


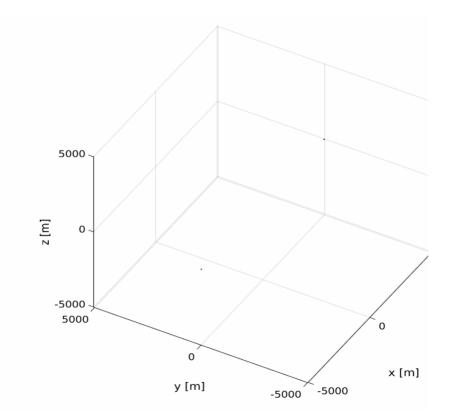


Tactic Set 2 Results

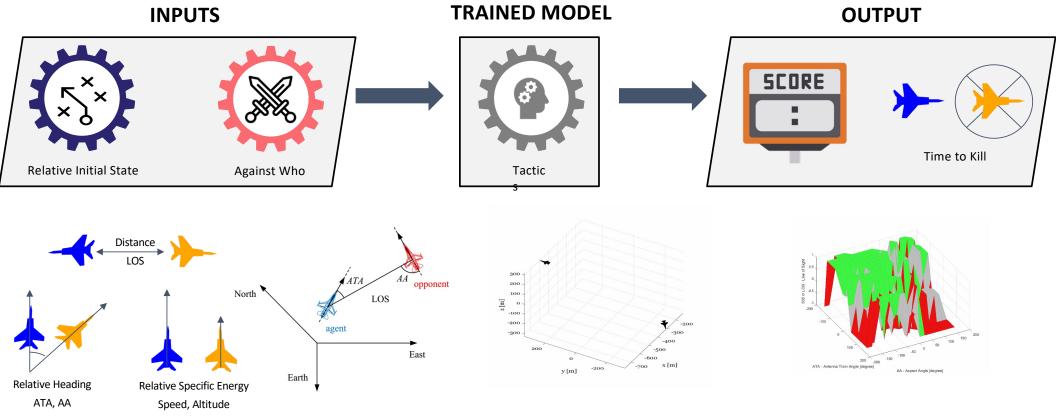
Rewards

- Keep nose on target
- Preserve your distance
- Don't let target to get behind





Winning Assessment with Changing Combat Conditions



Cranfield University

Winning Assessment with Changing Test Condition

Training Details

Rewards:

- Stay behind
- Keep nose on target
- Preserve your distance

Initial States:

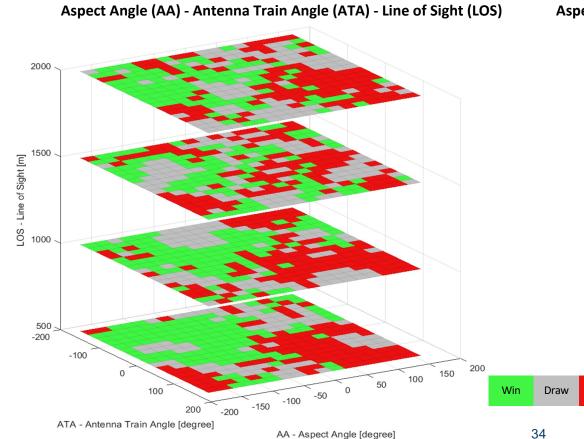
- Same heading
- Fixed always behind

Enemy Type:

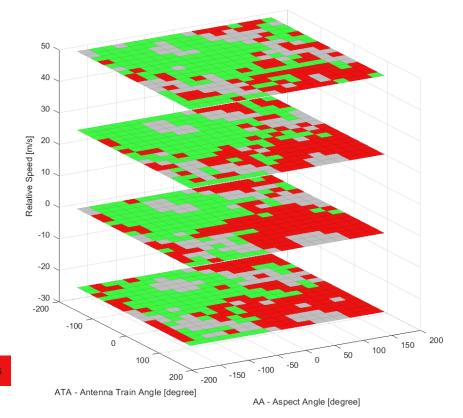
Random Motion

Winning Assessment with Changing Test Condition

Tactic 1 vs Tactic 1



Aspect Angle (AA) - Antenna Train Angle (ATA) - Relative Speed



34

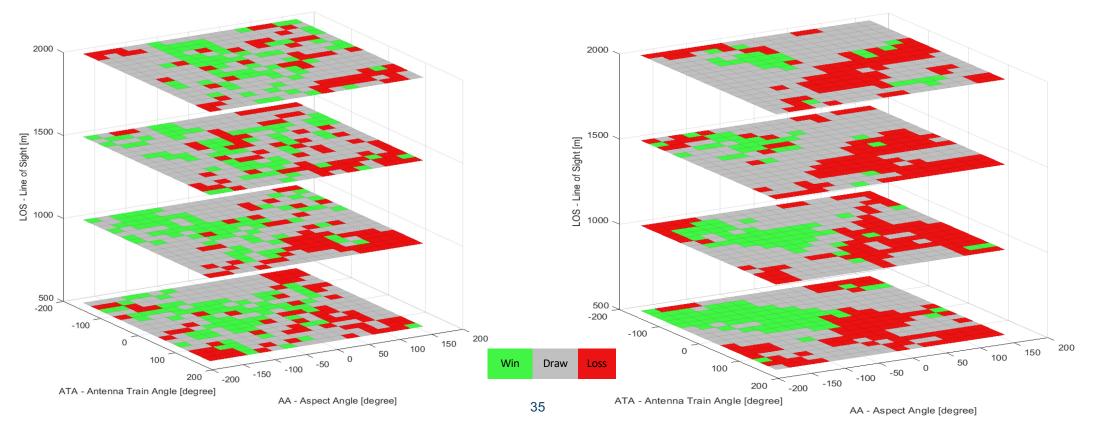
Winning Assessment with Changing Test Condition

Tactic 2 vs Tactic 2

Tactic 2 vs Tactic 1

Aspect Angle (AA) - Antenna Train Angle (ATA) - Line of Sight (LOS)

Aspect Angle (AA) - Antenna Train Angle (ATA) - Line of Sight (LOS)

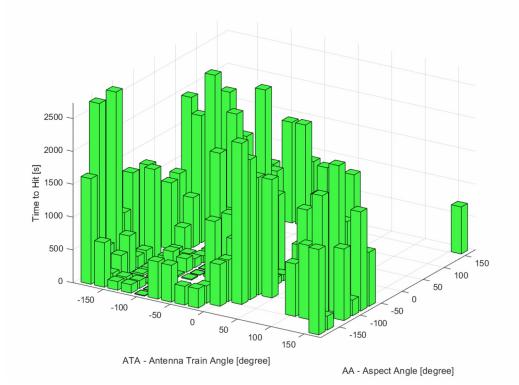


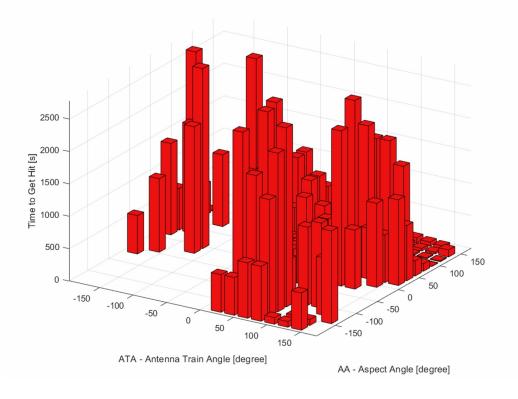
Winning Assessment with Changing Test Condition

Time To Hit

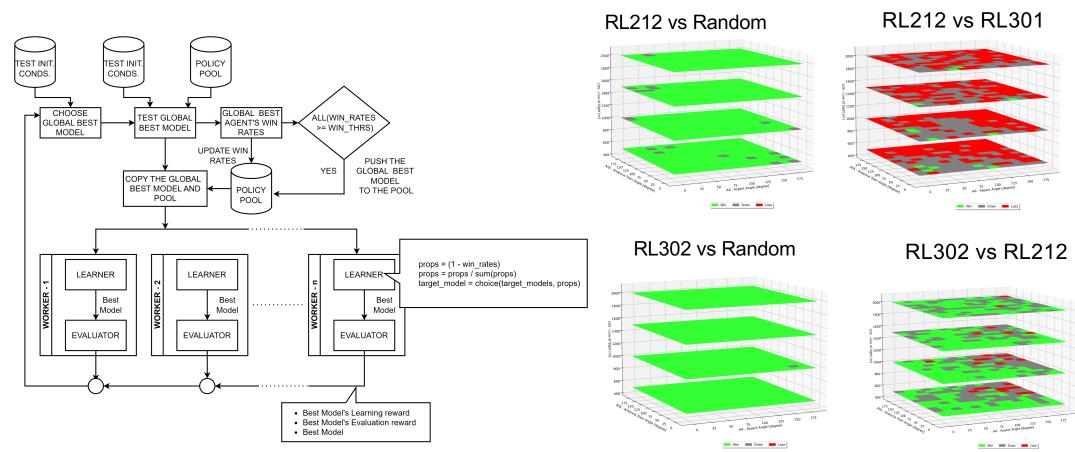
Time to Get Hit

Aspect Angle (AA) - Antenna Train Angle (ATA)





Designing a Super Agent



Reward Functions: Tactic Set 3

Training Details

Rewards:

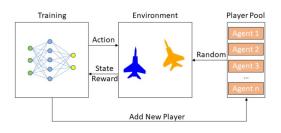
- Keep nose on target
- Preserve your distance
- Don't let target to get behind

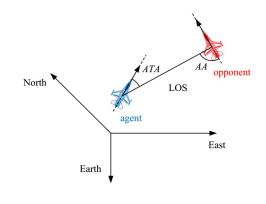
Initial States:

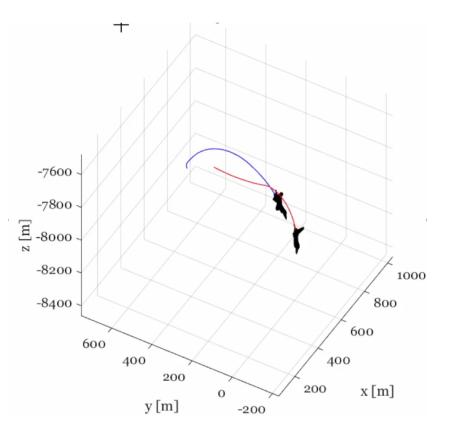
- Random orientation
- Random speed
- Random position

Enemy Type:

• Pool of Agents







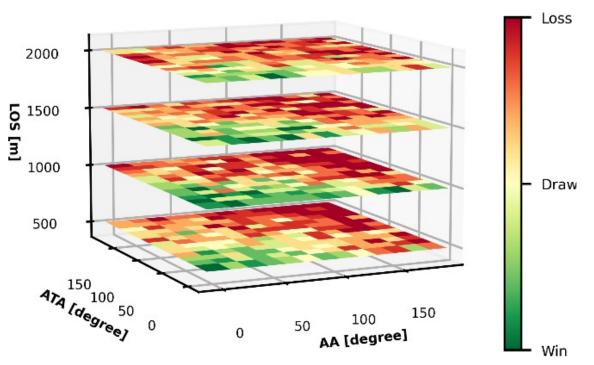
How does uncertainty come into play?

Tactic 1 vs Tactic 3

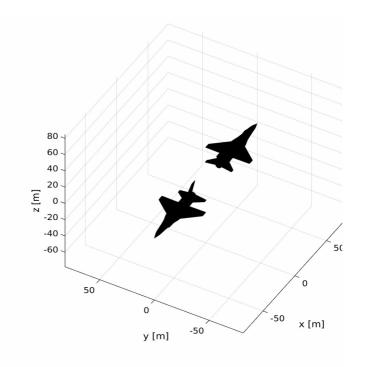
Aspect Angle (AA) - Antenna Train Angle (ATA) - Line of Sight (LOS)

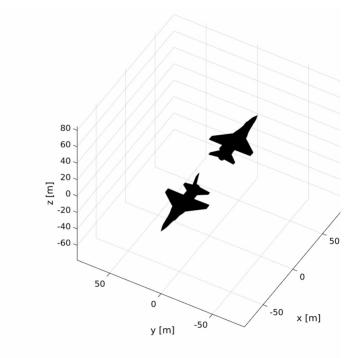
Tactic 2 vs Tactic 3

Aspect Angle (AA) - Antenna Train Angle (ATA) - Line of Sight (LOS)

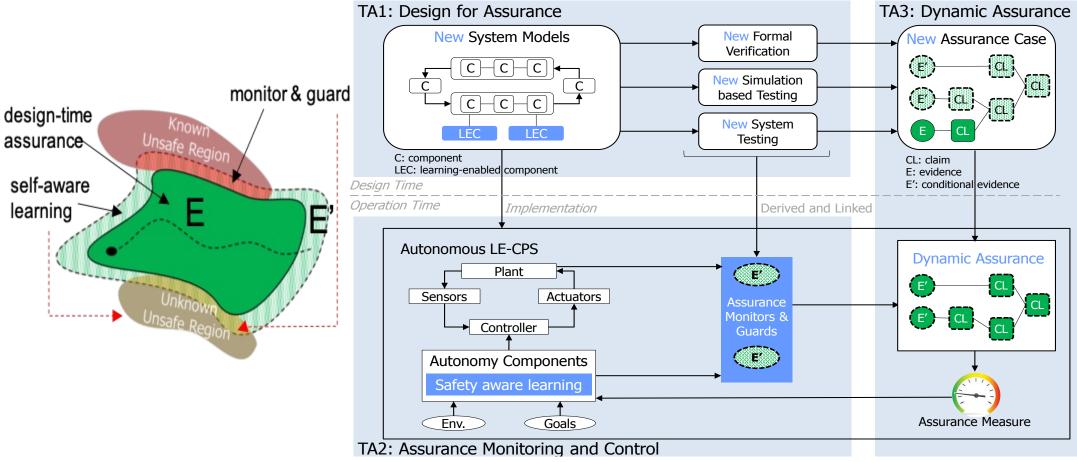


Default Turn Rate - 20 degree/sec



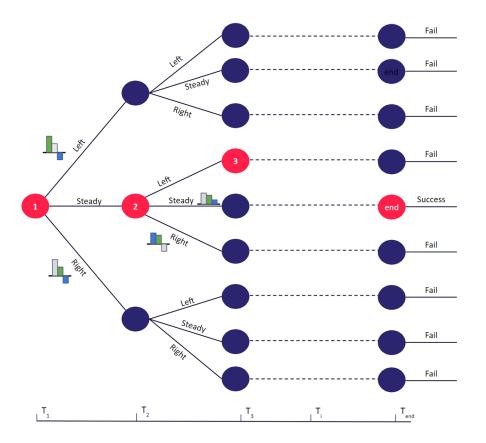


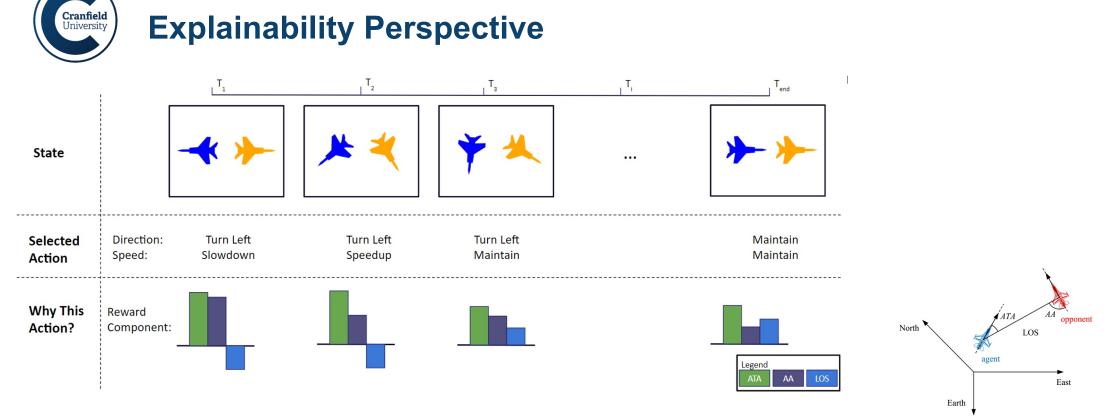
Learning Enable Al



Ref : Darpa Assured Autonomy

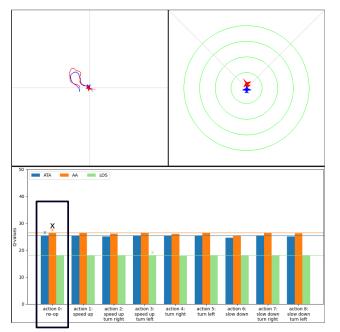
- Discrete action space can be displayed in a tree graph and can be link with agent's expected reward at each state.
- Simplified version of action space tree with 3 actions
- Bar graph at each action from red to blue node represents advantages of successful action compare to the non-selected action.

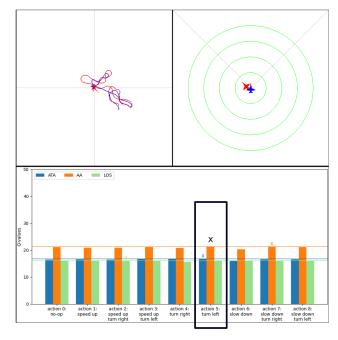


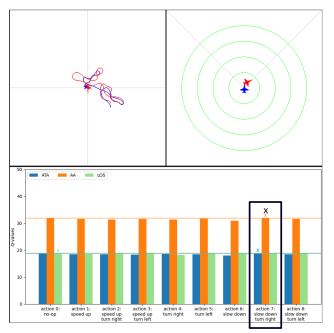


- Why did you choose the current action?
 - Shows which reward component the agent expected to have bigger return, thus deemed most important?
 - Ex: I choose action speed up, because I expected higher return for AA component.
- Why not an another action?
 - Give insight into why current action is more advantages or disadvantages than another action.

- Step by step explanation.
 - Which reward type(ATA, AA, LOS) contributed to current action.
 - Allow us to better evaluate agent's tactic and debug training process.





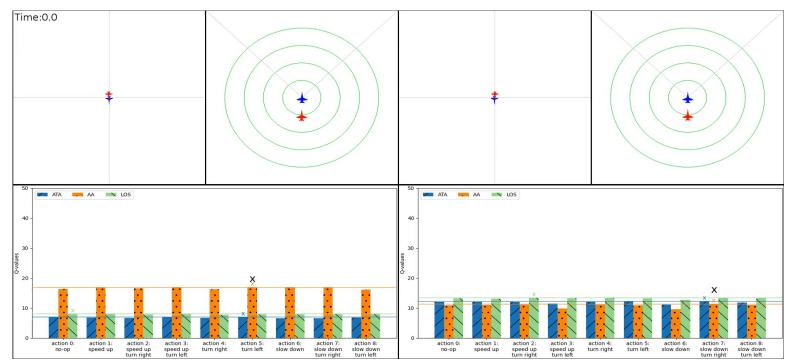


Explainability Perspective: Debugging

Left

Right

- Target action update period increased.
- Starting position range doubled.



Autonomous Systems and Artificial Intelligence in a Customer-Led World

New technology solutions lead to new Business Models, and Autonomy and AI are key enablers

Thank you..

www.cranfield.ac.uk

T: +44 (0)1234 750111

- 😏 @cranfielduni
- @cranfielduni
- 子 /cranfielduni