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Model Predictive Control

MPC is like playing CHESS

The choice of a move (control action) is realized by
projecting in the future the game scenery (dynam-
ical process model) and trying to predict how the
opponent will answer to our moves (output).

If in the next move the opponent answers in an un-
expected way (measurements), we need to re-plan
our move again in order to counteract the effect of
the opponent move (feedback).
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Classic MPC

Let us consider a discrete-time, linear system

xk+1 = Axk +Buk,

with state and input constrained into convex sets, i.e. xk ∈ X and uk ∈ U, such that

X = {x ∈ Rn |Hxx ≤ hx},U = {u ∈ Rm |Hux ≤ hu}.

As standard in MPC, we repeatedly solve a finite-horizon, receding optimal control problem

min
uk

JT (xk,uk)

s.t. xℓ+1|k = Axℓ|k +Buℓ|k, x0|k = xk, ℓ ∈ [0, T − 1]

xℓ|k ∈ X, uℓ|k ∈ U, ℓ ∈ [0, T − 1]

xT |k ∈ XT

obtaining u∗k = [u∗0|k, . . . , u
∗
T−1|k] but implementing only the first control action u∗0|k.
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Expectation vs reality
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Uncertain world

In real-world applications, the complexity of the phenomena and the random nature of data
makes dealing with uncertainty essential.

A. modeling B. system C. environment

Coping in an efficient way with uncertainty is a key issue.

Control engineers have started dealing explicitly with uncertainty.
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Design under uncertainty

“Solum certum nihil esse certi”
“The one thing that is certain is that there is nothing certain”

Plinius the old
Naturalis Historiæ, 77 A.D.
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From robust to stochastic

The idea of robust control has been playing a fundamental role. The robust controller:

1 guarantees performance satisfaction for all uncertainties,

2 is inevitably conservative,

3 provides a pessimistic view-point.

In the stochastic framework, the goal is to find a solution that is feasible for almost all
possible uncertainty realization.

This translates in accepting some risk up to a certain safe level that the performance may
be violated .

Tailoring stochastic predictive schemes for on-orbit control of space platforms M. Mammarella 8 / 40



Introduction SMPC framework Earth-observation Autonomous RDV Probabilistic scaling What’s next?

Optimization under uncertainty

Consider an uncertain optimization problem

A. Robust optimization

min
θ

c⊤θ

s.t. f(θ, w) ≤ 0, ∀w ∈ W

B. Chance-constrained optimization

min
θ

c⊤θ

s.t. PrW{f(θ, w) > 0} ≤ ε

Constraints involving stochastic parameters that are required to be satisfied with a pre-

specified probability threshold are called chance constraints.

Efficiently solving or approximating CC problems remains an important task requiring a

critical trade-off between complexity of the approach VS goodness of the approximation.

To deal with chance constraints, we propose a sample-based approach.
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Stochastic MPC
Let us consider a discrete-time, linear system of the form

xk+1 = A(qk)xk +B(qk)uk + wk,

▶ (wk)k∈N≥0
: realization of a stochastic process, where the disturbances are iid, zero-mean

random variables with bounded and convex support W;
▶ qk ∈ Q ⊂ Rnq : realization of iid, multivariate real random variables Qk.

Let’s assume that the system is subject to px individual chance constraints on the state xk

PrW{xk ∈ Rn |Hx,jxk ≤ hx,j} ≥ 1− εj , ∀k ∈ N≥0, ∀j ∈ [1, px],

and m hard constraints on the input uk

uk ∈ U = {uk ∈ Rm |Hx,jxk ≤ hx,j}, ∀k ∈ N≥0.
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Stochastic MPC

Let’s define the following dual-mode, parametrized feedback policy

uℓ|k = vℓ|k +Kxℓ|k,

with K quadratically stabilizing for the closed-loop system.

The correction term sequence vk{vℓ|k}Tℓ=0 is the minimizer of the expected cost

JT (xk,vk)
.
= E

{
T−1∑
ℓ=0

(
∥xℓ|k∥2Q + ∥uℓ|k∥2R

)
+ ∥xT |k∥2P

}
= x⊤S̃x

subject to state chance constraints and input hard constraints.

The expected values of the finite-horizon cost matrix S̃ can be evaluated offline, taking
random samples of uncertainty and disturbance sequences.
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Stochastic MPC

Following the sampling-based approach in [1], we derive a convex, inner approximation X̃ of
the chance-constrained set in xk,vk,wk, using results from SLT that define the minimum
number Nℓ of iid samples to draw to guarantee that, with probability high probability,

X̃ ⊆ XP , XP
.
= {xk, |P{xk ∈ X} ≥ 1− ε}.

To ensure robust recursive feasibility, we add a first-step constraint of the form

DR = {xk,vk |H∞(A+BK)jx0|k +H∞Bjv0|k ≤ h∞ −H∞w0|k},

such that the final constraint set is defined as

D .
= X̃× U ∩ DR

[1] Lorenzen, M., Dabbene, F., Tempo, R., Allgöwer, F. (2017). Stochastic MPC with offline uncertainty sampling. Automatica, 81, 176-183.
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Offline Sampling-based Stochastic MPC
Offline Step. Before running the online control algorithm:

1 Compute the expected value of S̃;

2 Compute the inner approximation X̃ of the chance-constrained set;

3 Compute D and remove redundant constraints.

Online Implementation. At each time step k:

1 Measure the current state xk;

2 Determine the minimizer of J subject to X̃, U, and DR, i.e.,

v∗k = arg min
vk

J(xk, vk)

s.t. (xk, vk) ∈ D;

3 Apply the control input uk = Kxk + v∗0|k.
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Earth-observation mission

Tailoring stochastic predictive schemes for on-orbit control of space platforms M. Mammarella 15 / 40



Introduction SMPC framework Earth-observation Autonomous RDV Probabilistic scaling What’s next?

Earth-observation mission

Tailoring stochastic predictive schemes for on-orbit control of space platforms M. Mammarella 16 / 40



Introduction SMPC framework Earth-observation Autonomous RDV Probabilistic scaling What’s next?

Earth-observation mission

Tailoring stochastic predictive schemes for on-orbit control of space platforms M. Mammarella 17 / 40



Introduction SMPC framework Earth-observation Autonomous RDV Probabilistic scaling What’s next?

Earth-observation mission
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Autonomous rendezvous and docking
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Experimental results @ NPS (Monterey, CA)

mass: 9.882± 0.001 kg

thrust: 0.15± 0.01 N

OBC: Intel Atom 1.6 GHz 32bit

memory: 2GB RAM, 8GB SSD

OS: RTAI-patched ubuntu 14.04
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Experimental results @ NPS (Monterey, CA)

Uncertain dicrete-time FSS dynamics

xk+1 =


q1 0 1 0
0 q1 0 1
0 2q2 0 0
0 3q3 −2q2 0

xk +


0 0
0 0

1
m

+ q4 0
0 1

m
+ q4

uk + wk

LOS approaching cone defined as a convex polytope with vertexes χ1, χ2, χ3.

Saturation constraints for thrusters:

uk ∈ U = {∥uk∥∞ ≤ 0.3};

Sample times:

i) FSS: 0.01 s; ii) nav: 0.02 s; iii) MPC: 3-5 s.
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OS-SMPC: experimental validation

20 runs for each initial condition in terms of position and orientation;

maneuver duration: 120-200 s (faster than classical/robust MPC);

max computation time: 4 s (over 5s allocated for the control task);

avg control effort: 4.69 Ns (lower than classic/robust MPC).
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A new tool for design under uncertainty

Basic idea of probabilistic scaling .
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Probabilistic scaling approach

The probabilistic scaling approach leads to approximations of user-chosen complexity.

We introduce Scalable Simple Approximating Sets (SAS).

ε-CSS Xε S(γ) = θc ⊕ γS PrW{S(γ∗) ⊆ Xε} ≥ 1− δ
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Probabilistic SAS scaling

Algorithm 1 Probabilistic SAS Scaling

1: Given a candidate Scalable SAS S(γ), and probability levels ε and δ, choose

Nγ ≥ 7.47

ε
ln

1

δ
and r =

⌈
εNγ

2

⌉
.

2: Draw Nγ samples of the uncertainty w(1), . . . , w(Nγ).

3: for i ∈ NNγ

1 do

4: Compute the Nγ scaling factors γi
.
= γ(w(i)), i ∈ NNγ

1

5: end for
6: Return γ̄ = γ−r = min(r)(Γ), the r-th smallest value of Γ = {γi}

Nγ

i=1.

⇒ PrW{S(γ̄) ⊆ Xε} ≥ 1− δ.
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Norm-based SAS

We define norm-based SAS of the form

Sℓp(γ)
.
= θc ⊕ γHBs

p, s ≥ nθ,

where Bs
p is a ℓp-ball in Rs and H ∈ Rnθ×ns is the shape matrix.

(a) p = 1, nθ = s = 3 (b) p = 2, nθ = s = 3 (c) p = ∞, nθ = 3, s = 10
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Norm-based SAS

Theorem (Scaling factor for norm-based SAS)

Given a norm-based SAS Sℓp(γ) = θc ⊕ γHBs
p and a realization w ∈ W, define τℓ(w)

.
=

gℓ(w)− fT
ℓ (w)θc and ρℓ(w)

.
= ∥HT fℓ(w)∥p∗ . The scaling factor γ(w) can be computed as

γ(w) = min
ℓ∈Nnℓ

1

γℓ(w),

with γℓ(w) given by

γℓ(w) =

{ 0 if τℓ(w) < 0, i.e. θc ̸∈ X(w)
∞ if τℓ(w) ≥ 0, ρℓ(w) = 0,

τℓ(w)
ρℓ(w) if τℓ(w) ≥ 0, ρℓ(w) > 0.
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Norm-based SAS

First, we draw a fixed number NS of design uncertainty samples {w(1), . . . , w(NS)} and we
build XNS

=
⋂NS

j=1X(w(i)).

Then, we compute the largest (volume) set θc⊕HBs
p included in XNS

, solving the following
(relaxed) optimization problem

min
θc,H,η1,...,ηNS

−Volp(H)+ξ

NS∑
j=1

max{ηj , 0}

s.t. f⊤
ℓ (w(j))θc + ∥HT fℓ(w

(j))∥p∗ − gℓ(w
(j)) ≤ 0, ℓ ∈ Nnℓ

1 , j ∈ NNS
1 .
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Norm-based SAS - Example

Sℓ1 -SAS, NS = 100

(a) γ = 0.9701

Sℓ1-SAS, NS = 1000

(b) γ = 1.5995

Sℓ∞ -SAS, NS = 100

(c) γ = 0.9696

Sℓ∞-SAS, NS = 1000

(d) γ = 1.5736

n. tcMAXOS
tcMAXPS

tcAV GOS
tcAV GPS

1 2.0959 0.4178 (-80%) 0.0966 0.0087 (-91%)
2 2.9411 0.5626 (-81%) 0.7221 0.0190 (-97%)
3 2.1497 0.5434 (-75%) 0.2628 0.0086 (-96%)
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Towards debris removal applications

Active debris removal as mitigation strat-

egy for non-functional satellites, aban-

doned vehicle stages, fragments, etc.

Post-capture, detumble and re-orient the

combined system.

Controllability issues if ADR vehicle and

debris have comparable inertia.

Model uncertainties from partial/missing

knowledge of debris mass/inertia.
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Disturbance probabilistic bounds

Let’s consider a discrete-time, linear system of the form

xk+1 = Axk +Buk + ζk,

where no assumption on neither independence nor Gaussianity are made on the stochastic
disturbance ζk, and with both state and input constrained in compact sets X and U, defined
in a mixed form as

Cxk +Duk ≤ h, ∀k ∈ N≥0.

GOAL: to achieve closed-loop guarantees by means of probabilistic validation techniques.

The proposed approach is defined at two different levels:
a constraint tightening using a sampling method to (upper) bound the effect of disturbances.
b (offline) probabilistic design of penalty function to guarantee recursive feasibility.
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Disturbance probabilistic bounds

Being the disturbance persistent, the state xℓ|k can be split into

xℓ|k = zℓ|k + eℓ|k,

and selecting a parametrized feedback policy of the form uℓ|k = vℓ|k +Kxℓ|k, we have

(C +DK)zℓ|k +Dvℓ|k ≤ h− (C +DK)eℓ|k.

Since {eℓ|k}T−1
ℓ=0 is completely determined by the disturbance sequence, we propose a

sample-based method to obtain a probabilistic upper bound on (C +DK)eℓ|k.
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Theorem

Given εq ∈ (0, 1) and δq ∈ (0, 1) and a discarding parameter rq, suppose that Sq i.i.d. samples
{ζ(1), . . . , ζ(Sq)} are drawn according to PD, and consequently we compute

qℓ,j =
⌈
{CK,jeℓ|0(ζ

(i))}Sq

i=1

⌉
rq
, ∀ℓ ∈ NT−1

0 , ∀j ∈ Nnh
1 .

Then, if Sq ≥ 1
εq

(
rq − 1 + ln nhT

δq
+
√

2(rq − 1) ln nhT
δq

)
, we have that, with probability no

smaller than 1− δq,

PD{CK,jeℓ|k(ζ) > qℓ,j} ≤ εq, ∀ℓ ∈ NT−1
0 , ∀j ∈ Nnh

1 ,

provided that rq ∈ NSq

1 and
∑rq−1

m=0

(
Sq

m

)
εmq (1− εq)

Sq−m ≤ δq
nhT

.
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Probabilistic bounds and penalty function
Tightened constraints

min
zk,vk

J(zk, vk)

s.t. z0|k = xk

zℓ+1|k = AKzℓ|k +Bvℓ|k, ∀ℓ ∈ NT−2
0

zT−1|k = AKzT−1|k +BvT−1|k

CKzℓ|k +Dvℓ|k ⪯ h− qℓ, ∀ℓ ∈ NT−1
0

Penalty function

min
zk,vk

J(zk, vk) + ρ

T−1∑
ℓ=0

⟨CKzℓ|k +Dvℓ|k − h+ qℓ⟩+

s.t. z0|k = xk

zℓ+1|k = AKzℓ|k +Bvℓ|k, ∀ℓ ∈ NT−2
0 ,

zT−1|k = AKzT−1|k +BvT−1|k

u0|k = v0|k +Kx0|k ∈ U.

To design the penalty parameter ρ, we use a sample-based design technique to ensure given probabilistic
guarantees over constraint satisfaction, obtaining a probabilistic upper bound on a performance index

g(w, ρ)
.
=

M∑
k=0

⟨Cxk(w, ρ) +Duk(w, ρ)− h⟩+ → g(w, ρ) = 0 ⇔ Cxk(w, ρ) +Duk(w, ρ) ⪯ h, ∀k ∈ NM
0 ,

for a finite-family of possible values of ρ.
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Disturbance forecasting extension

Let’s consider again a discrete-time, linear system of the form

xk+1 = Axk +Buk + dk, dk = d̂k + ζk,

affected by persistent, additive disturbance dk, which can be split into two contributions
with d̂k the estimated additive disturbance, modelled from data using disturbance fore-
casting techniques, and wk the unmodelled disturbance.

In this way, we can estimate the contribution of modelled terms on one side and proba-
bilistically upper bound the unmodelled one.

For estimating the predicted evolution of the disturbance over the prediction horizon starting
from past data, one can use different methods, e.g., black-box AutoRegressive eXogenous
(ARX) or Controlled Auto-Regressive and Integrated Moving-Average (CARIMA).
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